State-of-Charge Prediction Model for Ni-Cd Batteries Considering Temperature and Noise

Author:

Xu Haiming1,Yu Tianjian1,Chen Chunyang1,Wu Xun1

Affiliation:

1. Institute of Mass Transit and Electric Traction Technology, Central South University, Changsha 410004, China

Abstract

The accurate prediction of the state of charge (SOC) of Ni-Cd batteries is critical for developing battery management systems for high-speed trains. To address the challenges of the large floating charge voltage of Ni-Cd batteries and the vulnerability of a battery’s SOC to environmental factors such as temperature, this paper proposes an adaptive adjustment mechanism-based particle swarm optimization (APSO) generalized regression neural network (GRNN) model. The proposed model introduces the concept of the particle aggregation degree to quantify the convergence of the particle swarm optimization (PSO) algorithm. Furthermore, the speed weight of the particle swarm is adaptively adjusted using a comprehensive loss function to optimize the parameters of the GRNN model. To validate the proposed method, simulation experiments are conducted under test conditions using Ni-Cd batteries, and the prediction accuracies of various algorithms are compared. The experimental results demonstrate that the APSO-GRNN model significantly reduces the model’s prediction error. In addition, under the influence of different temperatures and noises, this method demonstrates strong robustness and high practical application value by accurately predicting the SOC, even with limited data samples.

Funder

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3