A Feasibility Study on Textile Sludge as a Raw Material for Sintering Lightweight Aggregates and Its Application in Concrete

Author:

Chen How-Ji1,Chang Wen-Tse1,Tang Chao-Wei234ORCID,Peng Ching-Fang2

Affiliation:

1. Department of Civil Engineering, National Chung-Hsing University, 145 Xingda Road, South District, Taichung City 40227, Taiwan

2. Department of Civil Engineering and Geomatics, Cheng Shiu University, No. 840, Chengching Road, Niaosong District, Kaohsiung 83347, Taiwan

3. Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, No. 840, Chengching Road, Niaosong District, Kaohsiung 83347, Taiwan

4. Super Micro Mass Research and Technology Center, Cheng Shiu University, No. 840, Chengching Road, Niaosong District, Kaohsiung 83347, Taiwan

Abstract

This study aimed to investigate the feasibility of textile sludge as a raw material for sintering lightweight aggregates (LWAs) and its application in concrete. Three samples of different components were taken from the textile sludge, which came from different textile factories in Taiwan. The analysis of the chemical composition of the sludge shows that the total content of SiO2, Al2O3, and Fe2O3 in the textile sludge was far lower than the recommended value in the literature, and that glassy melt could not be produced and sintered into LWAs alone. Therefore, the water purification sludge obtained from a water purification plant owned by the Taiwan Water Supply Company was used as the main raw material, and the textile sludge was used as the auxiliary raw material in addition amounts of 7.5%, 15.0%, and 22.5%. The test results showed that the LWAs sintered by adding textile sludge to water purification sludge could reach the particle density that is generally required for LWAs (between 0.2 and 1.8 g/cm3). The 14-day compressive strength of the lightweight aggregate concrete made from textile-sludge-based LWAs was between 20 and 25 MPa. This means that textile-sludge-based LWAs can be used in secondary structural concrete.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3