Detection of Adversarial Attacks against the Hybrid Convolutional Long Short-Term Memory Deep Learning Technique for Healthcare Monitoring Applications

Author:

Albattah Albatul1,Rassam Murad A.12ORCID

Affiliation:

1. Department of Information Technology, College of Computer, Qassim University, Qassim 51452, Saudi Arabia

2. Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen

Abstract

Deep learning (DL) models are frequently employed to extract valuable features from heterogeneous and high-dimensional healthcare data, which are used to keep track of patient well-being via healthcare monitoring systems. Essentially, the training and testing data for such models are collected by huge IoT devices that may contain noise (e.g., incorrect labels, abnormal data, and incomplete information) and may be subject to various types of adversarial attacks. Therefore, to ensure the reliability of the various Internet of Healthcare Things (IoHT) applications, the training and testing data that are required for such DL techniques should be guaranteed to be clean. This paper proposes a hybrid convolutional long short-term memory (ConvLSTM) technique to assure the reliability of IoHT monitoring applications by detecting anomalies and adversarial content in the training data used for developing DL models. Furthermore, countermeasure techniques are suggested to protect the DL models against such adversarial attacks during the training phase. An experimental evaluation using the public PhysioNet dataset demonstrates the ability of the proposed model to detect anomalous readings in the presence of adversarial attacks that were introduced in the training and testing stages. The evaluation results revealed that the model achieved an average F1 score of 97% and an accuracy of 98%, despite the introduction of adversarial attacks.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3