Antioxidant Activities of Plant Extracts (Ammannia multiflora, Ammannia coccinea, and Salix gracilistyla) Activate the Nrf2/HO-1 Signaling Pathway

Author:

Jayasingha Jayasingha Arachchige Chathuranga Chanaka1,Choi Yung Hyun2ORCID,Kang Chang-Hee3,Lee Mi-Hwa3,Heo Moon-Soo1,Kim Gi-Young1ORCID

Affiliation:

1. Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea

2. Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Republic of Korea

3. Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea

Abstract

To identify potent plant extracts with strong antioxidant activity, we evaluated the free radical scavenging activity of 184 plant extracts obtained from the Freshwater Bioresources Culture Collection (FBCC) of Nakdonggang National Institute of Biological Resources (Republic of Korea), as various plant extracts have been used therapeutically to prevent chronic diseases associated with oxidative stress. From them, three plant extracts (FBCC-EP858 from Ammannia multiflora, FBCC-EP920 from Ammannia coccinea, and FBCC-EP1014 from Salix gracilistyla) were selected based on their abilities to scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical with more than 80% efficiency. We found that these extracts had in vitro half maximal inhibitory concentration (IC50) values ranging from 11.89 to 14.26 μg/mL and strong total antioxidant activity (corresponding to approximately 0.18, 0.22, and 0.23 mM Trolox, respectively). We also studied the effect of these extracts on RAW 264.7 macrophages and found that FBCC-EP920 significantly downregulated relative cell viability at a concentration of 100 μg/mL. However, the other two extracts, FBCC-EP858 and FBCC-EP1014, did not affect cell viability at the same concentration. Additionally, all three extracts inhibited hydrogen peroxide (H2O2)-induced reactive oxygen species (ROS) production and depolarization of mitochondrial membrane potential in RAW 264.7 macrophages. An additional experiment in zebrafish larvae showed that the three extracts reduced 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescent intensity induced by H2O2. The extracts also upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression, and an HO-1 inhibitor, zinc protoporphyrin (ZnPP), attenuated the extract-induced antioxidant activity both in vivo and in vitro. Taken together, these findings suggest that the extracts from A. multiflora, A. coccinea, and S. gracilistyla have potential free radical scavenging and antioxidant capacities both in vivo and in vitro by activating the Nrf2/HO-1 signaling pathway. These results could be useful for the prevention and treatment of various oxidative stress-mediated human diseases.

Funder

Korea Environment, Industry & Technology Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3