Distorted Aerial Images Semantic Segmentation Method for Software-Based Analog Image Receivers Using Deep Combined Learning

Author:

De Silva Kalupahanage Dilusha Malintha1,Lee Hyo Jong1ORCID

Affiliation:

1. Division of Computer Science and Engineering, CAIIT, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

Aerial images are important for monitoring land cover and land resource management. An aerial imaging source which keeps its position at a higher altitude, and which has a considerable duration of airtime, employs wireless communications for sending images to relevant receivers. An aerial image must be transmitted from the image source to a ground station where it can be stored and analyzed. Due to transmission errors, aerial images which are received from an image transmitter contain distortions which can affect the quality of the images, causing noise, color shifts, and other issues that can impact the accuracy of semantic segmentation and the usefulness of the information contained in the images. Current semantic segmentation methods discard distorted images, which makes the available dataset small or treats them as normal images, which causes poor segmentation results. This paper proposes a deep-learning-based semantic segmentation method for distorted aerial images. For different receivers, distortions occur differently, and by considering the receiver specificness of the distortions, the proposed method was able to grasp the acceptability for a distorted image using semantic segmentation models trained with large aerial image datasets to build a combined model that can effectively segment a distorted aerial image which was received by an analog image receiver. Two combined deep learning models, an approximating model, and a segmentation model were trained combinedly to maximize the segmentation score for distorted images. The results showed that the combined learning method achieves higher intersection-over-union (IoU) scores than the results obtained by using only a segmentation model.

Funder

Korea Ministry of SMEs and Startups

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3