Modeling of Physical Activity Behavioral Interventions Relying on MPC Strategy

Author:

Salazar Carlos1ORCID,Martin Cesar1,Aguirre Adriana1,Eslambolchilar Parisa2,Asanza Victor1ORCID

Affiliation:

1. Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo Km 30.5 vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090150, Ecuador

2. School of Computer Science and Informatics, Cardiff University, Wales CF24 4AG, UK

Abstract

Physical inactivity is becoming an important threat to public health in today’s society. The COVID-19 pandemic has also reduced physical activity (PA) levels given all the restrictions imposed worldwide. In this work, physical activity interventions supported by mobile devices and relying on control engineering principles were proposed. The model was constructed relying on previous studies that consider a fluid analogy of Social Cognitive Theory (SCT), which is a psychological theory that describes how people acquire and maintain certain behaviors, including health-promoting behaviors, through the interplay of personal, environmental, and behavioral factors. The obtained model was validated using secondary data (collected earlier) from a real intervention with a group of male subjects in Great Britain. The present model was extended with new technology for a better understanding of behavior change interventions. This involved the use of applications, such as phone-based ecological momentary assessments, to collect behavioral data and the inclusion of simulations with logical reward conditions for reaching the behavioral threshold. A goal of 10,000 steps per day is recommended due to the significant link observed between higher daily step counts and lower mortality risk. The intervention was designed using a Model Predictive Control (MPC) algorithm configured to obtain a desired performance. The system was tested and validated using simulation scenarios that resemble different situations that may occur in a real setting.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3