Development and Evaluation of Deep Learning-Based Reconstruction Using Preclinical 7T Magnetic Resonance Imaging

Author:

Tsuji Naoki1,Kobayashi Takuma1,Ueda Junpei1,Saito Shigeyoshi12ORCID

Affiliation:

1. Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 560-0871, Osaka, Japan

2. Department of Advanced Medical Technologies, National Cardiovascular and Cerebral Research Center, Suita 564-8565, Osaka, Japan

Abstract

This study investigated a method for improving the quality of images with a low number of excitations (NEXs) based on deep learning using T2-weighted magnetic resonance imaging (MRI) of the heads of normal Wistar rats to achieve higher image quality and a shorter acquisition time. A 7T MRI was used to acquire T2-weighted images of the whole brain with NEXs = 2, 4, 8, and 12. As a preprocessing step, non-rigid registration of the acquired low NEX images (NEXs = 2, 4, 8) and NEXs = 12 images was performed. A residual dense network (RDN) was used for training. A low NEX image was used as the input to the RDN, and the NEX12 image was used as the correct image. For quantitative evaluation, we measured the signal-to-noise ratio (SNR), peak SNR, and structural similarity index measure of the original image and the image obtained by RDN. The NEX2 results are presented as an example. The SNR of the cortex was 10.4 for NEX2, whereas the SNR of the image reconstructed with RDN for NEX2 was 32.1. (The SNR NEX12 was 19.6) In addition, the PSNR in NEX2 was significantly increased to 35.4 ± 2.0 compared to the input image and to 37.6 ± 2.9 compared to the reconstructed image (p = 0.05). The SSIM in NEX2 was 0.78 ± 0.05 compared to the input image and 0.91 ± 0.05 compared to the reconstructed image (p = 0.0003). Furthermore, NEX2 succeeded in reducing the shooting time by 83%. Therefore, in preclinical 7T MRI, supervised learning between the NEXs using RDNs can potentially improve the image quality of low NEX images and shorten the acquisition time.

Funder

Program for Advanced Research Equipment Platforms MRI Platform

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3