Know an Emotion by the Company It Keeps: Word Embeddings from Reddit/Coronavirus

Author:

García-Rudolph Alejandro123ORCID,Sanchez-Pinsach David123,Frey Dietmar4,Opisso Eloy123ORCID,Cisek Katryna5,Kelleher John D.5ORCID

Affiliation:

1. Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació Adscrit a la UAB, 08027 Badalona, Spain

2. Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain

3. Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain

4. CLAIM Charité Lab for AI in Medicine, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany

5. Information, Communication and Entertainment Research Institute, Technological University Dublin (TU Dublin), D7 EWV4 Dublin, Ireland

Abstract

Social media is a crucial communication tool (e.g., with 430 million monthly active users in online forums such as Reddit), being an objective of Natural Language Processing (NLP) techniques. One of them (word embeddings) is based on the quotation, “You shall know a word by the company it keeps,” highlighting the importance of context in NLP. Meanwhile, “Context is everything in Emotion Research.” Therefore, we aimed to train a model (W2V) for generating word associations (also known as embeddings) using a popular Coronavirus Reddit forum, validate them using public evidence and apply them to the discovery of context for specific emotions previously reported as related to psychological resilience. We used Pushshiftr, quanteda, broom, wordVectors, and superheat R packages. We collected all 374,421 posts submitted by 104,351 users to Reddit/Coronavirus forum between January 2020 and July 2021. W2V identified 64 terms representing the context for seven positive emotions (gratitude, compassion, love, relief, hope, calm, and admiration) and 52 terms for seven negative emotions (anger, loneliness, boredom, fear, anxiety, confusion, sadness) all from valid experienced situations. We clustered them visually, highlighting contextual similarity. Although trained on a “small” dataset, W2V can be used for context discovery to expand on concepts such as psychological resilience.

Funder

PRECISE4Q Personalized Medicine by Predictive Modelling in Stroke for Better Quality of Life—European Union’s Horizon 2020 research and innovation program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3