Effective and Interpretable Rule Mining for Dynamic Job-Shop Scheduling via Improved Gene Expression Programming with Feature Selection

Author:

Sitahong Adilanmu1,Yuan Yiping1,Ma Junyan1,Lu Yongxin1,Mo Peiyin1

Affiliation:

1. School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China

Abstract

Gene expression programming (GEP) is frequently used to create intelligent dispatching rules for job-shop scheduling. The proper selection of the terminal set is a critical factor for the success of GEP. However, there are various job features and machine features that can be included in the terminal sets to capture the different characteristics of the job-shop state. Moreover, the importance of features in the terminal set varies greatly between scenarios. The irrelevant and redundant features may lead to high computational requirements and increased difficulty in interpreting generated rules. Consequently, a feature selection approach for evolving dispatching rules with improved GEP has been proposed, so as to select the proper terminal set for different dynamic job-shop scenarios. First, the adaptive variable neighborhood search algorithm was embedded into the GEP to obtain a diverse set of good rules for job-shop scenarios. Secondly, based on the fitness of the good rules and the contribution of features to the rules, a weighted voting ranking method was used to select features from the terminal set. The proposed approach was then compared with GEP-based algorithms and benchmark rules in the different job-shop conditions and scheduling objectives. The experimentally obtained results illustrated that the performance of the dispatching rules generated using the improved GEP algorithm after the feature selection process was better than that of both the baseline dispatching rules and the baseline GEP algorithm.

Funder

National Natural Science Foundation of China

Xinjiang Scientific and Technology Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3