Short Words for Writer Identification Using Neural Networks

Author:

Koukiou Georgia1ORCID

Affiliation:

1. Electronics Laboratory, Physics Department, University of Patras, 26504 Patras, Greece

Abstract

In biometrics, it is desirable to distinguish a person using only a short sample of his handwriting. This problem is treated in the present work using only a short word with three letters. It is shown that short words can contribute to high-performance writer identification if line characteristics are extracted using morphological directional transformations. Thus, directional morphological structuring elements are used as a tool for extracting this kind of information with the morphological opening operation. The line characteristics are organized based on Markov chains so that the elements of the transition matrix are used as feature vectors for identification. The Markov chains describe the alternation in the directional line features along the word. The analysis of the feature space is carried out using the Fisher linear discriminant method. The identification performance is assessed using neural networks, where the simplest neural structures are sought. The capabilities of these simple neural structures are investigated theoretically concerning the achieved separability into the feature space. The identification capabilities of the neural networks are further assessed using the leave-one-out method. It is proved that the neural methods achieve identification performance that approaches 100%. The significance of the proposed method is that it is the only one in the literature that presents high identification performance using only one short word. Furthermore, the features used as well as the classifiers are simple and robust. The method is independent of the language used regardless of the direction of writing. The NIST database is used for extracting short-length words having only three letters each.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3