Development of Pitch Cycle-Based Iterative Learning Contour Control for Thread Milling Operations in CNC Machine Tools

Author:

Yeh Syh-Shiuh1ORCID,Jiang Wei-Jia2

Affiliation:

1. Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Institute of Mechatronic Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

The helical contour motion accuracy of feed drive axes is important for thread milling operations in computer numerical control (CNC) machine tools. However, the motion dynamics and external disturbances significantly affect the contour motion results, while the feed drive axes perform helical motions in thread milling operations. Although existing iterative learning contour control (ILCC) methods can improve contour motion accuracy, the problems of data recording and processing on memory usage and computational burden in control systems, wasted materials, and increased costs in thread manufacturing still limit the practical applications of ILCC. Therefore, considering the similar motion dynamics and external disturbances of the feed drive axes during the pitch cycle motions of a helical path, this study developed a pitch cycle-based iterative learning contour control (PCB-ILCC) method to address the control system and thread manufacturing problems caused by the use of ILCC. For PCB-ILCC, this study adopted contour error vector estimation by referring to the interpolated positions on the pitch cycle of the helical path to simplify the computational complexity and designed the ILCC using the cycle learning method to easily implement the ILCC structure. Thus, this study developed a permanent magnet synchronous motor (PMSM) driving control utilizing the robust control method to mitigate the problems of motion dynamics and external disturbances on the feed drive axes. Thread milling experiments performed on a five-axis CNC machining center demonstrated the feasibility of the PCB-ILCC and validated that it can significantly improve the helical contour motion accuracy of the feed drive axes and achieve an 80% contour error reduction rate in comparison with the proportional–proportional–integral control, which is extensively used in commercialized PMSM drivers and CNC controllers.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3