Acoustic Emission-Based Detection of Impacts on Thermoplastic Aircraft Control Surfaces: A Preliminary Study

Author:

Ai Li1,Flowers Sydney2,Mesaric Tanner2,Henderson Bryson3,Houck Sydney3,Ziehl Paul13

Affiliation:

1. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC 29201, USA

2. Department of Integrated Information Technology, University of South Carolina, Columbia, SC 29201, USA

3. Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29201, USA

Abstract

The reliability of aircraft control surfaces, constructed from thermoplastic materials, can be affected by impacts from airborne particles. Recognizing the exact position of such impacts is essential for correctly estimating the resulting damage. This research intended to address the issue by introducing an innovative structural health monitoring solution capable of autonomously detecting and localizing impacts using acoustic emission monitoring. The objective of this research is to investigate the application of AE for the localization of impacts on aircraft elevators using machine learning techniques, specifically regression algorithms. To achieve this goal, two algorithms, linear regression, and random forest, were employed for predicting the impact locations based on AE signals. The performance of each algorithm was validated on a thermoplastic composite aircraft elevator. Results indicated that both linear regression and random forest models show high accuracy in predicting the impact locations. The random forest model, with an R2 value of 0.98616 and an RMSE of 0.6778, outperformed the linear regression model, which exhibited an R2 value of 0.9361 and an RMSE of 1.4614.

Funder

University of South Carolina

NASA University Leadership Initiative Cooperative Agreement entitled Innovative Manufacturing, Operation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3