Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces

Author:

Biancolillo Alessandra1ORCID,Ferretti Rossella2,Scappaticci Claudia1,Foschi Martina1ORCID,D’Archivio Angelo Antonio1ORCID,Di Santo Marco2,Di Martino Luciano2ORCID

Affiliation:

1. Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy

2. Majella Seed Bank-Parco Nazionale della Majella, Via Badia 28, 67039 Sulmona, Italy

Abstract

In recent years, Brassicaceae have piqued the interest of researchers due to their extremely rich chemical composition, particularly the abundance of antioxidants and anti-inflammatory compounds, as well as because of their antimutagenic and potential anticarcinogenic activity. Vegetables in this family can be found practically everywhere on the planet. In Italy, numerous varieties of Brassicaceae, as well as a diverse pool of local variants, are regularly cultivated. These landraces, which have a variety of peculiar features, have recently sparked increased interest, and the need to safeguard them to preserve genetic biodiversity has become a relevant topic. In the present study, eight distinct Brassicaceae folk varieties were studied using non-destructive tools (Multivariate Image analysis and agro-morphological descriptors). Eventually, the data were handled using explorative analysis (EA) and Soft Independent Modeling by Class Analogy (SIMCA). EA pointed out similarities/dissimilarities among the diverse investigated populations. SIMCA led to high sensitivity (>70%) in prediction (on the external test set) for seven (over eight) investigated classes. Although the investigated plants belong to different landraces, they bear strong similarities. This is mainly linked to the ability of Brassicaceae to hybridize. Despite this, the combination of colorgrams and SIMCA allowed for classifying samples with excellent accuracy.

Funder

Majella National Park

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3