Deep Learning Methods in Image Matting: A Survey

Author:

Huang Lingtao1ORCID,Liu Xipeng1ORCID,Wang Xuelin2,Li Jiangqi2,Tan Benying2ORCID

Affiliation:

1. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

2. School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Image matting is a fundamental technique used to extract a fine foreground image from a given image by estimating the opacity values of each pixel. It is one of the key techniques in image processing and has a wide range of applications in practical scenarios, such as in image and video editing. Deep learning has demonstrated outstanding performance in various image processing tasks, making it a popular research topic. In recent years, image matting methods based on deep learning have gained significant attention due to their superior performance. Therefore, this article presents a comprehensive overview of the deep learning-based image matting algorithms that have been proposed in recent years. This paper initially introduces frequently used datasets and their production methods, along with the basic principles of traditional image matting techniques. We then analyze deep learning-based matting algorithms in detail and introduce commonly used image matting evaluation metrics. Additionally, this paper discusses the application scenarios of image matting, conducts experiments to illustrate the limitations of current image matting methods, and outlines potential future research directions in this field. Overall, this paper can serve as a valuable reference for researchers that are interested in image matting.

Funder

Guangxi Science and Technology Major Project

Youth Science Fund Project of Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3