Affiliation:
1. Department Electrical Engineering, Universidad de Oviedo, 33204 Gijón, Spain
Abstract
It is generally considered that the representation of a double layer supercapacitor (DLSC) cannot be performed with the usual capacitance and resistance series connected, as it induces a relatively high level of inaccuracy in the results. In multiple previous studies, more advanced models have been developed with very different approaches: models with distributed parameter circuits, based on artificial neural networks (ANNs), fractional order, etc. A non-linear model, less complex than the previous ones and whose behavior adequately represents the DLSCs, is the one formed by a variable capacitance, dependent on its internal voltage. This paper presents a mathematical study to obtain analytical expressions of all the electrical variables of DLSCs, voltage, current, dissipated power and so on, by means of a previous model. This study is carried out considering that the DLSC is charged and discharged through a voltage source and also discharged through a resistor. In later sections, the operational conditions of the DLSC in numerous industrial applications are presented. Finally, a comparative analysis is made between the results produced by the conventional model, with constant capacitance, and the developed model. This analysis is finally followed by the conclusions.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science