Electromagnetic Imaging for Buried Conductors Using Deep Convolutional Neural Networks

Author:

Chiu Chien-Ching1ORCID,Chien Wei2,Yu Kai-Xu1,Chen Po-Hsiang1ORCID,Lim Eng Hock3

Affiliation:

1. Department of Electrical and Computer Engineering, Tamkang University, New Taipei City 251301, Taiwan

2. Department of Computer Information and Network Engineering, Lunghwa University of Science and Technology, Taoyuan City 333326, Taiwan

3. Department of Electrical and Electronic, University Tunku Abdul Rahman, Kajang 43200, Malaysia

Abstract

In the past, many conventional algorithms, such as self-adaptive dynamic differential evolution and asynchronous particle swarm optimization, were used to reconstruct buried objects in the frequency domain; these were unfortunately time-consuming during the iterative, repeated computing process of the scattered field. Consequently, we propose an innovative deep convolutional neural network approach to solve the electromagnetic inverse scattering problem for buried conductors in this paper. Different shapes of conductors are buried in one half-space and the electromagnetic wave from the other half-space is incident. The shape of the conductor can be reconstructed promptly by inputting the received scattered fields measured from the upper half-space into the deep convolutional neural network module, which avoids the computational complexity of Green’s function for training. Numerical results show that the root mean square error for differently shaped—circular, elliptical, arrow, peanut, four-petal, and three-petal—reconstructed images are, respectively, 2.95%, 3.11%, 17.81%, 15.10%, 14.14%, and 15.24%. Briefly speaking, not only can circular and elliptical buried conductors be reconstructed; some irregular shapes can be reconstructed well. On the contrary, the reconstruction result by U-Net for buried objects is worse since it is not able to obtain a good preliminary image by processing only the upper scattered field—that is, rather than the full space. In other words, our proposed deep convolutional neural network can efficiently solve the electromagnetic inverse scattering problem of buried conductors and provide a novel method for the microwave imaging of the buried conductors. This is the first successful attempt at using deep convolutional neural networks for buried conductors in the frequency domain, which may be useful for practical applications in various fields such as the medical, military, or industrial fields, including magnetic resonance imaging, mine detection and clearance, non-destructive testing, gas or wire pipeline detection, etc.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3