Performance Improvement of Microchannel Heat Exchangers with Modified Louver Fins under Frosting Conditions

Author:

Xiong Tong1,Liu Guoqiang1,Yan Gang1

Affiliation:

1. Department of Refrigeration and Cryogenic Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Microchannel heat exchangers (MCHX) are increasingly being used in refrigeration and heat pumps due to their superior thermal-hydraulic properties. However, when the MCHX surface temperature drops below the freezing point, frost will accumulate on the fin surface, which significantly affects the heat transfer performance. In this study, a modified MCHX with extended windward fins was developed to improve the frosting performance. The thermal-hydraulic performance of the modified MCHX and conventional MCHX were compared and evaluated under frosting conditions. Results show that the extended fins on the windward side capture a large amount of frost and delay the rapid blockage of air flow passage by frost. The modified MCHX structure makes the frost more evenly distributed. During the 60 min frosting cycle, the total heat transfer capacity and the mass of the accumulated frost of the modified MCHX are 9.6–49.7% and 10.3–46.9% higher than the conventional MCHX, respectively. Furthermore, the modified MCHX has greater potential to improve the thermal-hydraulic performance under the condition of more uneven frost layer distribution. The purpose of this work is to provide useful guidance for the optimal design of MCHX under frosting conditions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3