SFCA: A Scalable Formal Concepts Driven Architecture for Multi-Field Knowledge Graph Completion

Author:

Sun Xiaochun1,Wu Chenmou2ORCID,Yang Shuqun1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. Department of Computer Science & Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

With the proliferation of Knowledge Graphs (KGs), knowledge graph completion (KGC) has attracted much attention. Previous KGC methods focus on extracting shallow structural information from KGs or in combination with external knowledge, especially in commonsense concepts (generally, commonsense concepts refer to the basic concepts in related fields that are required for various tasks and academic research, for example, in the general domain, “Country” can be considered as a commonsense concept owned by “China”), to predict missing links. However, the technology of extracting commonsense concepts from the limited database is immature, and the scarce commonsense database is also bound to specific verticals (commonsense concepts vary greatly across verticals, verticals refer to a small field subdivided vertically under a large field). Furthermore, most existing KGC models refine performance on public KGs, leading to inapplicability to actual KGs. To address these limitations, we proposed a novel Scalable Formal Concept-driven Architecture (SFCA) to automatically encode factual triples into formal concepts as a superior structural feature, to support rich information to KGE. Specifically, we generate dense formal concepts first, then yield a handful of entity-related formal concepts by sampling and delimiting the appropriate candidate entity range via the filtered formal concepts to improve the inference of KGC. Compared with commonsense concepts, KGC benefits from more valuable information from the formal concepts, and our self-supervision extraction method can be applied to any KGs. Comprehensive experiments on five public datasets demonstrate the effectiveness and scalability of SFCA. Besides, the proposed architecture also achieves the SOTA performance on the industry dataset. This method provides a new idea in the promotion and application of knowledge graphs in AI downstream tasks in general and industrial fields.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. How Context or Knowledge Can Benefit Healthcare Question Answering?;Wang;IEEE Trans. Knowl. Data Eng.,2021

2. Contextualized graph attention network for recommendation with item knowledge graph;Liu;IEEE Trans. Knowl. Data Eng.,2021

3. Kang, S., Shi, L., and Zhang, Z. (2022). Knowledge Graph Double Interaction Graph Neural Network for Recommendation Algorithm. Appl. Sci., 12.

4. Reliable keyword query interpretation on summary graphs;Zhong;IEEE Trans. Knowl. Data Eng.,2022

5. Sun, Y., Chun, S.-J., and Lee, Y. (2022). Learned semantic index structure using knowledge graph embedding and density-based spatial clustering techniques. Appl. Sci., 12.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3