Delay-Informed Intelligent Formation Control for UAV-Assisted IoT Application

Author:

Liu Lihan1,Xu Mengjiao2,Wang Zhuwei2ORCID,Fang Chao23ORCID,Li Zhensong4ORCID,Li Meng2ORCID,Sun Yang2ORCID,Chen Huamin2ORCID

Affiliation:

1. School of Statistics and Data Science, Beijing Wuzi University, Beijing 101149, China

2. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

3. Purple Mountain Laboratory: Networking, Communications and Security, Nanjing 210096, China

4. School of Information and Communication Engineering, Beijing Information Science and Technology University, Beijing 100101, China

Abstract

Multiple unmanned aerial vehicles (UAVs) have a greater potential to be widely used in UAV-assisted IoT applications. UAV formation, as an effective way to improve surveillance and security, has been extensively of concern. The leader–follower approach is efficient for UAV formation, as the whole formation system needs to find only the leader’s trajectory. This paper studies the leader–follower surveillance system. Owing to different scenarios and assignments, the leading velocity is dynamic. The inevitable communication time delays resulting from information sending, communicating and receiving process bring challenges in the design of real-time UAV formation control. In this paper, the design of UAV formation tracking based on deep reinforcement learning (DRL) is investigated for high mobility scenarios in the presence of communication delay. To be more specific, the optimization UAV formation problem is firstly formulated to be a state error minimization problem by using the quadratic cost function when the communication delay is considered. Then, the delay-informed Markov decision process (DIMDP) is developed by including the previous actions in order to compensate the performance degradation induced by the time delay. Subsequently, an extended-delay informed deep deterministic policy gradient (DIDDPG) algorithm is proposed. Finally, some issues, such as computational complexity analysis and the effect of the time delay are discussed, and then the proposed intelligent algorithm is further extended to the arbitrary communication delay case. Numerical experiments demonstrate that the proposed DIDDPG algorithm can significantly alleviate the performance degradation caused by time delays.

Funder

Beijing Natural Science Foundation

Beijing Nova Program of Science and Technology

Foundation of Beijing Municipal Commission of Education

Urban Carbon Neutral Science and Technology Innovation Fund Project of Beijing University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3