An Improved Ant Colony Algorithm for Urban Bus Network Optimization Based on Existing Bus Routes

Author:

Wei Yuanyuan,Jiang Nan,Li ZiweiORCID,Zheng Dongdong,Chen Minjie,Zhang Miaomiao

Abstract

Adding new lines on the basis of the existing public transport network is an important way to improve public transport operation networks and the quality of urban public transport service. Aiming at the problem that existing routes are rarely considered in the previous research on public transportation network planning, a public transportation network optimization method based on an ant colony optimization (ACO) algorithm coupled with the existing routes is proposed. First, the actual road network and existing bus lines were abstracted with a graph data structure, and the integration with origin–destination passenger flow data was completed. Second, according to the ACO algorithm, combined with the existing line structure constraints and ant transfer rules at adjacent nodes, new bus-line planning was realized. Finally, according to the change of direct passenger flow in the entire network, the optimal bus-line network optimization scheme was determined. In the process of node transfer calculation, the algorithm adopts the Softmax strategy to realize path diversity and increase the path search range, while avoiding premature convergence and falling into local optimization. Moreover, the elite ant strategy increases the pheromone release on the current optimal path and accelerates the convergence of the algorithm. Based on existing road network and bus lines, the algorithm carries out new line planning, which increases the rationality and practical feasibility of the new bus-line structure.

Funder

National Key Research and Development Program of China.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference29 articles.

1. Evaluating the impact of bus network planning changes in Sydney, Australia

2. Method of public transit network planning based on strategy equilibrium transit assignment;Xu;J. Transp. Syst. Eng. Inf. Technol.,2015

3. Efficient transit network design and frequencies setting multi-objective optimization by alternating objective genetic algorithm

4. A two-phase optimization model for the demand-responsive customized bus network design

5. A mathematical model for designing optimal urban gas networks, an ant colony algorithm and a case study;Torkinejad;Int. J. Prod. Res.,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3