How Has the Recent Climate Change Affected the Spatiotemporal Variation of Reference Evapotranspiration in a Climate Transitional Zone of Eastern China?

Author:

Li Meng12,Chu Ronghao345ORCID,Sha Xiuzhu6,Islam Abu7ORCID,Jiang Yuelin2,Shen Shuanghe8

Affiliation:

1. School of Civil Aviation, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

2. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China

3. China Meteorological Administration•Henan Key Laboratory of Agrometeorological Support and Applied Technique, Zhengzhou 450003, China

4. Henan Institute of Meteorological Sciences, Zhengzhou 450003, China

5. Anhui Public Meteorological Service Center, Anhui Meteorological Bureau, Hefei 230031, China

6. The Weather Modification Center of Henan Province, Zhengzhou 450003, China

7. Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh

8. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

Reference evapotranspiration (ET0) is essential for agricultural production and crop water management. The recent climate change affecting the spatiotemporal variation of ET0 in eastern China continues to still be less understood. For this purpose, the latest observed data from 77 meteorological stations in Anhui province were utilized to determine the spatiotemporal variations of ET0 by the use of the Penman–Monteith FAO 56 (PMF-56) model. Furthermore, the Theil–Sen estimator and the Mann–Kendall (M–K) test were adopted to analyze the trends of ET0 and meteorological factors. Moreover, the differential method was employed to explore the sensitivity of ET0 to meteorological factors and the contributions of meteorological factors to ET0 trends. Results show that the ET0 decreased significantly before 1990, and then increased slowly. The ET0 is commonly higher in the north and lower in the south. ET0 is most sensitive to relative humidity (RH), except in summer. However, in summer, net radiation (Rn) is the most sensitive factor. During 1961–1990, Rn was the leading factor annually, during the growing season and summer, while wind speed (u2) played a leading role in others. All meteorological factors provide negative contributions to ET0 trends, which ultimately lead to decreasing ET0 trends. During 1991–2019, the leading factor of ET0 trends changed to the mean temperature (Ta) annually, during the growing season, spring and summer, and then to Rn in others. Overall, the negative contributions from u2 and Rn cannot offset the positive contributions from Ta and RH, which ultimately lead to slow upward ET0 trends. The dramatic drop in the amount of u2 that contributes to the changes in ET0 in Region III is also worth noting.

Funder

National Key Research and Development Program of China

Anhui Provincial Natural Science Foundation

National Natural Science Foundation of China

Anhui Agricultural University Science Foundation for Young Scholars

Anhui Agricultural University Introduction and Stabilization of Talent Fund

Scientific Research Project of the Anhui Meteorological Bureau

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3