Spatial Concept Query Based on Lattice-Tree

Author:

Xu Aopeng,Zhang Zhiyuan,Ma Xiaqing,Zhang Zixiang,Xu TaoORCID

Abstract

As a basic method of spatial data operation, spatial keyword query can provide meaningful information to meet user demands by searching spatial textual datasets. How to accurately understand users’ intentions and efficiently retrieve results from spatial textual big data are always the focus of research. Spatial textual big data and their complex correlation between textual features not only enrich the connotation of spatial objects but also bring difficulties to the efficient recognition and retrieval of similar spatial objects. Because there are a lot of many-to-many relationships between massive spatial objects and textual features, most of the existing research results that employ tree-like and table-like structures to index spatial data and textual data are inefficient in retrieving similar spatial objects. In this paper, firstly, we define spatial textual concept (STC) as a group of spatial objects with the same textual keywords in a limited spatial region in order to present the many-to-many relationships between spatial objects and textual features. Then we attempt to introduce the concept lattice model to maintain a group of related STCs and propose a hybrid tree-like spatial index structure, the lattice-tree, for spatial textual big data. Lattice-tree employs R-tree to index the spatial location of objects, and it embeds a concept lattice structure into specific tree nodes to organize the STC set from a large number of textual keywords of objects and their relationships. Based on this, we also propose a novel spatial keyword query, named Top-k spatial concept query (TkSCQ), to answer STC and retrieve similar spatial objects with multiple textual features. The empirical study is carried out on two spatial textual big data sets from Yelp and Amap. Experiments on the lattice-tree verify its feasibility and demonstrate that it is efficient to embed the concept lattice structure into tree nodes of 3 to 5 levels. Experiments on TkSCQ evaluate lattice from results, keywords, data volume, and so on, and two baseline index structures based on IR-tree and Fp-tree, named the inverted-tree and Fpindex-tree, are developed to compare with the lattice-tree on data sets from Yelp and Amap. Experimental results demonstrate that the Lattice-tree has the better retrieval efficiency in most cases, especially in the case of large amounts of data queries, where the retrieval performance of the lattice-tree is much better than the inverted-tree and Fpindex-tree.

Funder

East China Normal University under Grant

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Index Including Non-Spatial Attributes;The Journal of Korean Institute of Information Technology;2024-01-31

2. Essential roles of the ANKRD31–REC114 interaction in meiotic recombination and mouse spermatogenesis;Proceedings of the National Academy of Sciences;2023-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3