AuNPs-Based Thermoresponsive Nanoreactor as an Efficient Catalyst for the Reduction of 4-Nitrophenol

Author:

Liu Wei,Zhu Xiaolian,Xu Chengcheng,Dai Zhao,Meng Zhaohui

Abstract

A new AuNPs-based thermosensitive nanoreactor (SiO2@PMBA@Au@PNIPAM) was designed and prepared by stabilizing AuNPs in the layer of poly(N,N’-methylenebisacrylamide) (PMBA) and subsequent wrapping with the temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) layer. The new nanoreactor exhibited high dispersibility and stability in aqueous solution and effectively prevented the aggregation of AuNPs caused by the phase transformation of PNIPAM. The XPS and ATR-FTIR results indicated that AuNPs could be well stabilized by PMBA due to the electron transfer between the N atoms of amide groups in the PMBA and Au atoms of AuNPs. The catalytic activity and thermoresponsive property of the new nanoreactor were invested by the reduction of the environmental pollutant, 4-nitrophenol (4-NP), with NaBH4 as a reductant. It exhibited a higher catalytic activity at 20 °C and 30 °C (below LCST of PNIPAM), but an inhibited catalytic activity at 40 °C (above LCST of PNIPAM). The PNIPAM layer played a switching role in controlling the catalytic rate by altering the reaction temperature. In addition, this nanoreactor showed an easily recyclable property due to the existence of a silica core and also preserved a rather high catalytic efficiency after 16 times of recycling.

Funder

National Natural Science Foundation of China

Tianjin Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3