Characterization and Comparison of Contrast Imaging Properties of Naturally Isolated and Heterologously Expressed Gas Vesicles

Author:

Liu Tingting12,Wang Jieqiong3,Liu Chenxing4,Wang Yuanyuan4,Li Zhenzhou12,Yan Fei4

Affiliation:

1. Ultrasonic Medicine, Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, China

2. Department of Ultrasound, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen 518061, China

3. Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China

4. Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Nanoscale ultrasound contrast agents have attracted considerable interest in the medical imaging field for their ability to penetrate tumor vasculature and enable targeted imaging of cancer cells by attaching to tumor-specific ligands. Despite their potential, traditional chemically synthesized contrast agents face challenges related to complex synthesis, poor biocompatibility, and inconsistent imaging due to non-uniform particle sizes. To address these limitations, bio-synthesized nanoscale ultrasound contrast agents have been proposed as a viable alternative, offering advantages such as enhanced biocompatibility, consistent particle size for reliable imaging, and the potential for precise functionalization to improve tumor targeting. In this study, we successfully isolated cylindrical gas vesicles (GVs) from Serratia. 39006 and subsequently introduced the GVs-encoding gene cluster into Escherichia coli using genetic engineering techniques. We then characterized the contrast imaging properties of two kinds of purified GVs, using in vitro and in vivo methods. Our results demonstrated that naturally isolated GVs could produce stable ultrasound contrast signals in murine livers and tumors using clinical diagnostic ultrasound equipment. Additionally, heterologously expressed GVs from gene-engineered bacteria also exhibited good ultrasound contrast performance. Thus, our study presents favorable support for the application of genetic engineering techniques in the modification of gas vesicles for future biomedical practice.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Shenzhen Institute of Synthetic Biology Scientific Research Program

Shenzhen Medical Research Fund

Shenzhen Second People’s Hospital Clinical Research Fund of Guangdong Province High-level Hospital Construction Project

Medical-Engineering Interdisciplinary Research Foundation of Shenzhen University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3