Aberrant Mannosylated and Highly Fucosylated Glycoepitopes of Prostatic Acid Phosphatase as Potential Ligands for Dendritic-Cell Specific ICAM-Grabbing Nonintegrin (DC-SIGN) in Human Seminal Plasma—A Step towards Explaining Idiopathic Infertility

Author:

Kałuża Anna1ORCID,Trzęsicka Katarzyna2ORCID,Drzyzga Damian2ORCID,Ferens-Sieczkowska Mirosława1ORCID

Affiliation:

1. Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, M. Skłodowskiej-Curie 48/50, 50-369 Wroclaw, Poland

2. INVICTA, Research and Development Center, Polna 64, 81-740 Sopot, Poland

Abstract

Semen prostatic acid phosphatase (PAP) has been proposed as an endogenous ligand for dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), which plays a critical immuno-modulating role in maintaining homeostasis in the female reproductive tracts. In the current study, we assumed that semen PAP bears a set of fucosylated and mannosylated glycans, which may mediate the efficient binding of PAP to DC-SIGN. To investigate this hypothesis, we developed ELISA assays using Galanthus nivalis and Lotus tetragonolobus lectins capable of binding mannose-containing glycans or LewisX and LewisY motifs, respectively. In our assay with Galanthus nivalis, we detected that the relative reactivity of PAP mannose-presenting glycans in the normozoospermic idiopathic group was significantly higher than in the asthenozoospermic, oligozoospermic and oligoasthenozoospermic groups. Simultaneously, we observed slight differences in the relative reactivities of PAP glycans with Lotus tetragonolobus lectin among groups of patients with abnormal semen parameters. Subsequently, we examined whether DC-SIGN interacts with seminal plasma PAP glycans, and we detected a significantly higher relative reactivity in the normozoospermic group compared to the oligozoospermic group. Finally, we concluded that the significantly aberrant abundance of mannosylated functional groups of PAP among patients with semen disorders can suggest that PAP may thereby be engaged in modulating the immune response and promoting a tolerogenic response to male antigens in the female reproductive system.

Funder

Wroclaw Medical University

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3