Regulation of Angiogenesis by Non-Coding RNAs in Cancer

Author:

Su Zhiyue1,Li Wenshu1,Lei Zhe1,Hu Lin2ORCID,Wang Shengjie3ORCID,Guo Lingchuan1

Affiliation:

1. Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China

2. State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China

3. Department of Basic Medicine, Kangda College, Nanjing Medical University, Lianyungang 222000, China

Abstract

Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been identified as crucial regulators of various biological processes through epigenetic regulation, transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a process essential for tumor growth and metastasis and a major contributor to cancer-related mortality. Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost importance. Numerous studies have documented the involvement of different types of non-coding RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic targets for anti-angiogenic interventions against cancer.

Funder

National Natural Science Foundation of China

Suzhou Science and Technology Program-Applied and Fundamental Medical Research-Key Clinical Technology Research

the Natural Science Foundation of Jiangsu Province

Lianyungang Key R&D Program

Publisher

MDPI AG

Reference163 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3