Contact Lenses Delivering Nitric Oxide under Daylight for Reduction of Bacterial Contamination

Author:

Seggio MimimorenaORCID,Nostro AntoniaORCID,Ginestra Giovanna,Quaglia FabianaORCID,Sortino SalvatoreORCID

Abstract

Ocular infection due to microbial contamination is one of the main risks associated with the wearing of contact lens, which demands novel straightforward strategies to find reliable solutions. This contribution reports the preparation, characterization and biological evaluation of soft contact lenses (CL) releasing nitric oxide (NO), as an unconventional antibacterial agent, under daylight exposure. A tailored NO photodonor (NOPD) was embedded into commercial CL leading to doped CL with an excellent optical transparency (transmittance = 100%) at λ ≥ 450 nm. The NOPD results homogeneously distributed in the CL matrix where it fully preserves the photobehavior exhibited in solution. In particular, NO release from the CL and its diffusion in the supernatant physiological solution is observed upon visible light illumination. The presence of a blue fluorescent reporting functionality into the molecular skeleton of the NOPD, which activates concomitantly to the NO photorelease, allows the easy monitoring of the NO delivery in real-time and confirms that the doped CL work under daylight exposure. The NO photoreleasing CL are well-tolerated in both dark and light conditions by corneal cells while being able to induce good growth inhibition of Staphylococcus aureus under visible light irradiation. These results may pave the way to further engineering of the CL with NOPD as innovative ocular devices activatable by sunlight.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3