Shape-Controlled Syntheses of Magnetite Microparticles and Their Magnetorheology

Author:

Abe Hiroya,Naka Takashi,Sato Kazuyoshi,Suzuki Yoshikazu,Nakano MasamiORCID

Abstract

Magnetic microspheres in a concentrated suspension can be self-assembled to form chain structures under a magnetic field, resulting in an enhanced viscosity and elasticity of the suspension (i.e., the magnetorheological (MR) effect). Recently, interest has been raised about the relationship between nonspherical particles, such as octahedral particles and the MR effect. However, experimental studies have not made much progress toward clarifying this issue due to the difficulty associated with synthesizing microparticles with well-defined shapes and sizes. Here, we presented a method for the shape-controlled synthesis of magnetite (Fe3O4) microparticles and investigated the MR effects of two suspensions prepared from the two shape-controlled samples of Fe3O4 microparticles. Our method, which was based on the polyol method, enabled the preparation of spherical and octahedral Fe3O4 microparticles with similar sizes and magnetic properties, through a reduction of α-FeOOH in a mixed solvent of ethylene glycol (a polyol) and water. The water played an important role in both the phase transition (α-FeOOH to Fe3O4) and the shape control. No substantial difference in the MR effect was observed between an octahedral-particle-based suspension and a spherical-particle-based one. Therefore, in this study, the shape of the microparticles did not strongly influence the MR effect, i.e., the properties of the chain structures.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3