Surface-Functionalized Nanoparticles as Efficient Tools in Targeted Therapy of Pregnancy Complications

Author:

Zhang Baozhen,Liang RuijingORCID,Zheng Mingbin,Cai Lintao,Fan XiujunORCID

Abstract

Minimizing exposure of the fetus to medication and reducing adverse off-target effects in the mother are the primary challenges in developing novel drugs to treat pregnancy complications. Nanomedicine has introduced opportunities for the development of novel platforms enabling targeted delivery of drugs in pregnancy. This review sets out to discuss the advances and potential of surface-functionalized nanoparticles in the targeted therapy of pregnancy complications. We first describe the human placental anatomy, which is fundamental for developing placenta-targeted therapy, and then we review current knowledge of nanoparticle transplacental transport mechanisms. Meanwhile, recent surface-functionalized nanoparticles for targeting the uterus and placenta are examined. Indeed, surface-functionalized nanoparticles could help prevent transplacental passage and promote placental-specific drug delivery, thereby enhancing efficacy and improving safety. We have achieved promising results in targeting the placenta via placental chondroitin sulfate A (plCSA), which is exclusively expressed in the placenta, using plCSA binding peptide (plCSA-BP)-decorated nanoparticles. Others have also focused on using placenta- and uterus-enriched molecules as targets to deliver therapeutics via surface-functionalized nanoparticles. Additionally, we propose that placenta-specific exosomes and surface-modified exosomes might be potential tools in the targeted therapy of pregnancy complications. Altogether, surface-functionalized nanoparticles have great potential value as clinical tools in the targeted therapy of pregnancy complications.

Funder

the National Key Research and Development Program of China

National Natural Sciences Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3