Abstract
This paper presents a residual energy estimation-based medium access control (REE-MAC) protocol for wireless powered sensor networks (WPSNs) composed of a central coordinator and multiple sensor devices. REE-MAC aims to reduce overhead due to control messages for scheduling the energy harvesting operation of sensor devices and provide fairness for data transmission opportunities to sensor devices. REE-MAC uses two types of superframes that operate simultaneously in different frequency bands: the wireless energy transfer (WET) superframe and wireless information transfer (WIT) superframe. At the beginning of each superframe, the coordinator estimates the change in the residual energy of individual sensor devices caused by their energy consumption and energy harvesting during the previous superframe. It then determines the devices’ charging priorities, based on which it allocates dedicated power slots (DPSs) within the WET superframe. The simulation results demonstrated that REE-MAC exhibits superior performance for the harvested energy, average freezing time, and fairness to existing representative WPSN MAC protocols.
Funder
Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献