High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology

Author:

Chen Bo,Liu Yi,Feng Jian,Zhang Yuqiang,Zhou Yufeng,Zhou ChenORCID,Zhao Zhengyu

Abstract

E-region field-aligned irregularities (FAIs) are a hot topic in space research, since electromagnetic signal propagation through ionospheric irregularities can undergo sporadic enhancements and fading known as ionospheric scintillation, which could severely affect communication, navigation, and radar systems. However, the range resolution of very-high-frequency (VHF) radars, which is widely used to observe E-region FAIs, is limited due to its bandwidth. As a technology that is widely used in atmosphere radars to improve the range resolution of pulsed radars by transmitting multiple frequencies, this paper employed the multifrequency radar imaging (RIM) technique in a Wuhan VHF radar. The results showed that the range resolution of E-region FAIs greatly improved when compared with the results in traditional single-frequency mode, and that finer structures of E-region FAIs can be obtained. Specifically, the imaging results in multifrequency mode show that E-region FAIs demonstrate an overall descending trend at night, and it could be related to the tides or gravity waves due to their downward phase velocities or even driven by downwind shear. In addition, typical quasi-periodic (QP) echoes with a time period of around 10 min could be clearly seen using the RIM technique, and the features of the echoes suggest that they could be modulated by gravity waves. Furthermore, the RIM technique can be used to obtain the fine structure of irregularities within a short time period, and the hierarchical structure of E-region FAIs can be easily found. Therefore, the multifrequency imaging RIM technique is suitable for observing E-region FAIs and their evolution, as well as for identifying the different layers of E-region FAIs. Combined with the RIM technique, a VHF radar provides an effective and promising way to observe the structure of E-region FAIs in more detail to study the physical mechanism behind the formation and evolution of ionospheric E-region irregularities.

Funder

Stable-Support Scientific Project of the China Research Institute of Radio Wave Propagation

Hubei Natural Science Foundation

National Natural Science Foundation of China

Foundation of National Key Laboratory of Electromagnetic Environment

Excellent Youth Foundation of Hubei Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3