Innovative Remote Sensing Identification of Cyanobacterial Blooms Inspired from Pseudo Water Color

Author:

Cao ZhenORCID,Jing Yuanyuan,Zhang Yuchao,Lai Lai,Liu Zhaomin,Yang Qiduo

Abstract

The identification and monitoring of cyanobacterial blooms (CBs) is critical for ensuring water security. However, traditional methods are time-consuming and labor-intensive and are not ideal for large-scale monitoring. In operational monitoring, the existing remote sensing methods are also not ideal due to complex surface features, unstable models, and poor robustness thresholds. Here, a novel algorithm, the pseudo-Forel-Ule index (P-FUI), is developed and validated to identify cyanobacterial blooms based on Terra MODIS, Landsat-8 OLI, Sentinel-2 MSI, and Sentinel-3 OLCI sensors. First, three parameters of P-FUI, that is, brightness Y, saturation s, and hue angle α, were calculated based on remote sensing reflectance. Then, the robustness thresholds of the parameters were determined by statistical analysis for a frequency distribution histogram. We validated the accuracy of our approach using high-spatial-resolution satellite data with the aid of field investigations. Considerable results were obtained by using water color differences directly. The overall classification accuracy is more than 93.76%, and the user’s accuracy and producer’s accuracy are more than 94.60% and 94.00%, respectively, with a kappa coefficient of 0.91. The identified cyanobacterial blooms’ spatial distribution with high, medium, and low intensity produced consistent results compared to those based on satellite data. Impact factors were also discussed, and the algorithm was shown to be tolerant of perturbations by clouds and high turbidity. This new approach enables operational monitoring of cyanobacterial blooms in eutrophic lakes.

Funder

National Natural Science Foundation of China

Scientific Instrument Developing Project of the Chinese Academy of Sciences

Water Science and Technology Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3