Capacity Estimation of Solar Farms Using Deep Learning on High-Resolution Satellite Imagery

Author:

Ravishankar Rashmi,AlMahmoud ElafORCID,Habib Abdulelah,de Weck Olivier L.ORCID

Abstract

Global solar photovoltaic capacity has consistently doubled every 18 months over the last two decades, going from 0.3 GW in 2000 to 643 GW in 2019, and is forecast to reach 4240 GW by 2040. However, these numbers are uncertain, and virtually all reporting on deployments lacks a unified source of either information or validation. In this paper, we propose, optimize, and validate a deep learning framework to detect and map solar farms using a state-of-the-art semantic segmentation convolutional neural network applied to satellite imagery. As a final step in the pipeline, we propose a model to estimate the energy generation capacity of the detected solar energy facilities. Objectively, the deep learning model achieved highly competitive performance indicators, including a mean accuracy of 96.87%, and a Jaccard Index (intersection over union of classified pixels) score of 95.5%. Subjectively, it was found to detect spaces between panels producing a segmentation output at a sub-farm level that was better than human labeling. Finally, the detected areas and predicted generation capacities were validated against publicly available data to within an average error of 4.5% Deep learning applied specifically for the detection and mapping of solar farms is an active area of research, and this deep learning capacity evaluation pipeline is one of the first of its kind. We also share an original dataset of overhead solar farm satellite imagery comprising 23,000 images (256 × 256 pixels each), and the corresponding labels upon which the machine learning model was trained.

Funder

KACST

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference13 articles.

1. Opportunities and challenges for a sustainable energy future;Chu;Nature,2012

2. (2022, October 10). BP Statistical Review of World Energy 2018: Two Steps Forward, One Step Back | News and Insights | Home. Available online: https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-statistical-review-of-world-energy-2018.html.

3. A global inventory of photovoltaic solar energy generating units;Kruitwagen;Nature,2021

4. (2022, October 10). International Solar Alliance. Available online: https://newsroom.unfccc.int/news/international-solar-alliance.

5. DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States;Yu;Joule,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3