Abstract
Accurate calculation of the whitecap fraction is of great importance for the estimation of air-sea momentum flux, heat flux and sea-salt aerosol flux in Earth system models. Past whitecap fraction parameterizations were mostly power functions of wind speed, lacking consideration of other factors, while the single wind speed dependence makes it difficult to explain the variability of the whitecap fraction. In this work, we constructed a novel multivariate whitecap fraction parameterization using a deep neural network, which is diagnosed and interpreted. Compared with a recent developed parameterization by Albert and coworkers, the new parameterization can reduce the computational error of the whitecap fraction by about 15%, and it can better characterize the variability of the whitecap fraction, which provides a reference for the uncertainty study of sea-salt aerosol estimation. Through a permutation test, we ranked the importance of different input variables and revealed the indispensable role of variables such as significant wave height, sea surface temperature, etc., in the whitecap fraction parameterization.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献