Whitecap Fraction Parameterization and Understanding with Deep Neural Network

Author:

Zhou Shuyi,Xu FanghuaORCID,Shi Ruizi

Abstract

Accurate calculation of the whitecap fraction is of great importance for the estimation of air-sea momentum flux, heat flux and sea-salt aerosol flux in Earth system models. Past whitecap fraction parameterizations were mostly power functions of wind speed, lacking consideration of other factors, while the single wind speed dependence makes it difficult to explain the variability of the whitecap fraction. In this work, we constructed a novel multivariate whitecap fraction parameterization using a deep neural network, which is diagnosed and interpreted. Compared with a recent developed parameterization by Albert and coworkers, the new parameterization can reduce the computational error of the whitecap fraction by about 15%, and it can better characterize the variability of the whitecap fraction, which provides a reference for the uncertainty study of sea-salt aerosol estimation. Through a permutation test, we ranked the importance of different input variables and revealed the indispensable role of variables such as significant wave height, sea surface temperature, etc., in the whitecap fraction parameterization.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3