Abstract
Landslide disasters cause serious property losses and casualties every year. Landslide displacement prediction is fundamental for mitigating landslide disasters. Several approaches have been used to predict landslide displacement, yet a more accurate and reliable displacement prediction still has a poor understanding of landslide early warning systems for landslide mitigation, due to limited data and mutational displacements. To boost the robustness and accuracy of landslide displacement prediction, this paper assembled a new hybrid model containing the local mean decomposition (LMD), innovations state space models for exponential smoothing (ETS), and the temporal convolutional network (TCN). The proposed model, which is based on over 10 years of long-term time series monitoring GPS data, was tested on the selected case—stepwise Baijiabao landslide in the Three Gorges Reservoir area of China (TGRA) was tested by the proposed model. The results presented that the LMD–ETS–TCN model has the best performance in comparison with other benchmark models. Compared with autoregressive integrated moving average (ARIMA), support vector regression (SVR), and long short-term memory neural network (LSTM), the accuracy was noticeably improved by an average of 40.9%, 46.2%, and 22.1%, respectively. The robustness and effectiveness of the presented approach are attested, and it has discernible improvements for landslide displacement prediction.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province of China
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University
Subject
General Earth and Planetary Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献