Evaluation and Comparison of Six High-Resolution Daily Precipitation Products in Mainland China

Author:

Wu XiaoranORCID,Zhao NaORCID

Abstract

Satellite-based and reanalysis precipitation products have experienced increasing popularity in agricultural, hydrological and meteorological applications, but their accuracy is still uncertain in different areas. In this study, six frequently used high-resolution daily precipitation products, including Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Global Satellite Mapping of Precipitation (GSMaP), Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG), Multi-Source Weighted-Ensemble Precipitation (MSWEP), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) and European Center for Medium-Range Weather Forecasts Reanalysis V5-Land (ERA5-Land), were comprehensively evaluated and compared in nine regions of mainland China between 2015 and 2019. The results reveal that, in general, GSMaP is the best precipitation product in different agricultural regions, especially based on the Pearson correlation coefficient (CC) and critical success index (CSI). ERA5-Land and MSWEP tend to have the highest probability of detection (POD) values, and MSWEP tends to have the smallest relative root mean squared error (RRMSE) values. GSMaP performs better at almost all precipitation levels and in most agricultural regions in each season, while MSWEP has the best performance for capturing the time series of mean daily precipitation. In addition, all precipitation products perform better in summer and worse in winter, and they are more accurate in the eastern region. The findings of this study will contribute to understanding the uncertainties of precipitation products, improving product quality and guiding product selection.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program (A) of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3