Research on Plug-in Hybrid Electric Vehicle (PHEV) Energy Management Strategy with Dynamic Planning Considering Engine Start/Stop

Author:

Chen Chengming1,Wang Xuan1ORCID,Xie Zhizhong1,Lei Zhengling1,Shangguan Chunxia1ORCID

Affiliation:

1. College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China

Abstract

The key to improving the fuel economy of plug-in hybrid electric vehicles (PHEVs) lies in the energy management strategy (EMS). Existing EMS often neglects engine operating conditions, leading to frequent start–stop events, which affect fuel economy and engine lifespan. This paper proposes an Integrated Engine Start–Stop Dynamic Programming (IESS-DP) energy management strategy, aiming to optimize energy consumption. An enhanced rule-based strategy is designed for the engine’s operating conditions, significantly reducing fuel consumption during idling through engine start–stop control. Furthermore, the IESS-DP energy management strategy is designed. This strategy comprehensively considers engine start–stop control states and introduces weighting coefficients to balance fuel consumption and engine start–stop costs. Precise control of energy flow is achieved through a global optimization framework to improve fuel economy. Simulation results show that under the World Light Vehicle Test Cycle (WLTC), the IESS-DP EMS achieves a fuel consumption of 3.36 L/100 km. This represents a reduction of 6.15% compared to the traditional DP strategy and 5.35% compared to the deep reinforcement learning-based EMS combined with engine start–stop (DDRL/SS) strategy. Additionally, the number of engine start–stop events is reduced by 43% compared to the DP strategy and 16% compared to the DDRL/SS strategy.

Funder

National Natural Science Foundation of China

Open Fund of Key Laboratory of High Performance Ship Technology

Ministry of Education

Open Subject of the State Key Laboratory of Engines

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3