Solar–Hydrogen-Storage Integrated Electric Vehicle Charging Stations with Demand-Side Management and Social Welfare Maximization

Author:

Duan Lijia1,Taylor Gareth1ORCID,Lai Chun Sing1ORCID

Affiliation:

1. Department of Electronic and Electrical Engineering Brunel University London, London UB8 3PH, UK

Abstract

The reliable operation of a power system requires a real-time balance between supply and demand. However, it is difficult to achieve this balance solely by relying on supply-side regulation. Therefore, it is necessary to cooperate with effective demand-side management, which is a key strategy within smart grid systems, encouraging end-users to actively engage and optimize their electricity usage. This paper proposes a novel bi-level optimization model for integrating solar, hydrogen, and battery storage systems with charging stations (SHS-EVCSs) to maximize social welfare. The first level employs a non-cooperative game theory model for each individual EVCS to minimize capital and operational costs. The second level uses a cooperative game framework with an internal management system to optimize energy transactions among multiple EVCSs while considering EV owners’ economic interests. A Markov decision process models uncertainties in EV charging times, and Monte Carlo simulations predict charging demand. Real-time electricity pricing based on the dual theory enables demand-side management strategies like peak shaving and valley filling. Case studies demonstrate the model’s effectiveness in reducing peak loads, balancing energy utilization, and enhancing overall system efficiency and sustainability through optimized renewable integration, energy storage, EV charging coordination, social welfare maximization, and cost minimization. The proposed approach offers a promising pathway toward sustainable energy infrastructure by harmonizing renewable sources, storage technologies, EV charging demands, and societal benefits.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3