Incremental Learning for LiDAR Attack Recognition Framework in Intelligent Driving Using Gaussian Processes

Author:

Miao Zujia12,Shao Cuiping13ORCID,Li Huiyun13ORCID,Cui Yunduan1

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China

2. Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China

3. Faculty of Computility Microelectronics, Shenzhen University of Advanced Technology (SUAT), Shenzhen 518055, China

Abstract

The perception system plays a crucial role by integrating LiDAR and various sensors to perform localization and object detection, which ensures the security of intelligent driving. However, existing research indicates that LiDAR is vulnerable to sensor attacks, which lead to inappropriate driving strategies and need effective attack recognition methods. Previous LiDAR attack recognition methods rely on fixed anomaly thresholds obtained from depth map data distributions in specific scenarios as static anomaly boundaries, which lead to reduced accuracy, increased false alarm rates, and a lack of performance stability. To address these problems, we propose an adaptive LiDAR attack recognition framework capable of adjusting to different driving scenarios. This framework initially models the perception system by integrating the vehicle dynamics model and object tracking algorithms to extract data features, subsequently employing Gaussian Processes for the probabilistic modeling of these features. Finally, the framework employs sparsification computing techniques and a sliding window strategy to continuously update the Gaussian Process model with window data, which achieves incremental learning that generates uncertainty estimates as dynamic anomaly boundaries to recognize attacks. The performance of the proposed framework has been evaluated extensively using the real-world KITTI dataset covering four driving scenarios. Compared to previous methods, our framework achieves a 100% accuracy rate and a 0% false positive rate in the localization system, and an average increase of 3.43% in detection accuracy in the detection system across the four scenarios, which demonstrates superior adaptive capabilities.

Funder

National Natural Science Foundation of China

Shenzhen Basic Research Project

Basic and Applied Basic Research Foundation of Guangdong Province

Guangdong Provincial Key Laboratory of Computility Microelectronics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3