Affiliation:
1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
Abstract
The sealing technology of proton exchange membrane fuel cells (PEMFCs) is a critical factor in ensuring their performance, impacting driving safety and range efficiency. To guarantee the safe operation of PEMFCs in complex environments, it is essential to conduct related sealing research. The structure of the fuel cell sealing system is complex, with components in close contact, and identifying factors that affect its sealing performance is crucial for the development and application of the cells. This paper briefly describes the sealing mechanism of PEMFCs and introduces four typical sealing structures. It considers both the assembly and operation processes, summarizing assembly errors, sealing gaskets, and sealing leaks as well as vibration, cyclic temperature and humidity, and cyclic assembly. The research status of the sealing system in simulations and experiments is reviewed in detail. The key factors affecting the sealing performance of fuel cells are emphasized, highlighting the significance of dynamic detection of the gasket status, stack performance improvement under cumulative errors, and multi-objective optimization models combining contact pressure with the characteristics of stack components.
Funder
Shanghai Natural Science Foundation