Rendezvous of Nonholonomic Unmanned Ground Vehicles with Ultra-Wide-Angle Cameras

Author:

Li Lijun1,Wang Yuanda1,Xiong Chao2,Shang Wei23

Affiliation:

1. School of Automation, Southeast University, Nanjing 214135, China

2. Ningbo Cixing Co., Ltd., Ningbo 315000, China

3. School of Mechanical Engineering, Hubei Univeristy of Technology, Wuhan 430000, China

Abstract

In this paper, a time-varying delay output feedback control method based on the potential barrier function is proposed, which can solve the communication delay and field-of-view (FOV) constraints of Unmanned Ground Vehicle (UGV) clusters when communicating with ultra-wide-angle cameras. First, a second-order oscillator and an output feedback controller are utilized to feed back the position and direction of neighboring vehicles by exchanging control quantities and to solve the time-varying delay in the position computation of the ultra-wide-angle camera. Due to the limited target radiation range perceived by the camera, an FOV-constrained potential function is adopted to optimize the design of the sliding mode surface. The stability of the closed-loop control system is analyzed by applying the Lyapunov method. Finally, simulation experiments are conducted to verify the effectiveness of the consensus scheme in addressing the communication delay and FOV constraint problem under two different initial conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3