Investigations on Oxidation Behavior of Free-Standing CoNiCrAlYHf Coating with Different Surface Roughness at 1050 °C

Author:

Hakimi Nadimullah1ORCID,Song Peng12ORCID,Huma Tabasum1,Hanifi Dadallah1,Bakhshyar Danish3,Abdul Ghafar Wahab4ORCID,Huang Taihong15

Affiliation:

1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming 650093, China

3. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China

4. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China

5. Yunnan Engineering Research Center of Metallic Powder Materials, Kunming 650093, China

Abstract

MCrAlYHf bond coats are employed in jet and aircraft engines, stationary gas turbines, and power plants, which require strong resistance to oxidation at high temperatures. This study investigated the oxidation behavior of a free-standing CoNiCrAlYHf coating with varying surface roughness. The surface roughness was analyzed using a contact profilometer and SEM. Oxidation tests were conducted in an air furnace at 1050 °C to examine the oxidation kinetics. X-ray diffraction, focused ion beam, scanning electron microscopy, and scanning transmission electron microscopy were employed to characterize the surface oxides. The results show that the sample with Ra = 0.130 µm demonstrates better oxidation resistance compared to Ra = 7.572 µm and other surfaces with higher roughness in this study. Reducing surface roughness led to a decrease in the thickness of oxide scales, while the smoothest surface exhibited increased growth of internal HfO2. The β-phase on the surface with Ra = 130 µm demonstrated faster growth of Al2O3 compared to the γ-phase. An empirical model was suggested to explain the impact of surface roughness on oxidation behavior based on the correlation between the surface roughness level and oxidation rates.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Yunnan

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3