Affiliation:
1. China Coal Research Institute, Beijing 100013, China
2. Beijing China Coal Mine Engineering Company Ltd., Beijing 100013, China
3. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100085, China
4. National Engineering Research Center of Deep Shaft Construction, Beijing 100013, China
Abstract
As a widely used material in underground engineering, clay-cement slurry grouting is characterized by poor initial anti-seepage and filtration capacity, low strength of the resulting stone body, and a tendency to brittle failure. In this study, a novel type of clay-cement slurry was developed by adding of graphene oxide (GO) as a modifier to ordinary clay-cement slurry. The rheological properties of the improved slurry were studied through laboratory tests, and the effects of varying amounts of GO on the slurry’s viscosity, stability, plastic strength, and stone body mechanical properties were analyzed. The results indicated that the viscosity of clay-cement slurry increases by a maximum of 163% with 0.05% GO, resulting in a decrease in the slurry’s fluidity. The stability and plastic strength of GO-modified clay-cement slurry were significantly enhanced, with the plastic strength increasing by a 5.62 time with 0.03% GO and a 7.11 time with 0.05% GO at the same curing time. The stone body of the slurry exhibited increased uniaxial compressive strength and shear strength, with maximum increases of 23.94% and 25.27% with 0.05% GO, respectively, indicating a significant optimization effect on the slurry’s durability. The micro-mechanism for the effect of GO on the properties of slurry was investigated using scanning electron microscopy (SEM) and a diffraction of X-rays (XRD) test. Moreover, a growth model of the stone body of GO-modified clay-cement slurry was proposed. The results showed that after the GO-modified clay-cement slurry was solidified, a clay-cement agglomerate space skeleton with GO monolayer as the core was formed inside the stone body, and with an increase in GO content from 0.03% to 0.05%, the number of clay particles increased. The clay particles filled the skeleton to form a slurry system architecture, which is the primary reason for the superior performance of GO-modified clay-cement slurry when compared with traditional clay-cement slurry.
Funder
National Natural Science Foundation of China
Bingtuan Financial Science and Technology Project
Subject
General Materials Science
Reference38 articles.
1. Roadway strata control technology by means of bolting-modification-destressing in synergy in 1000 m deep coal mines;Kang;J. China Coal Soc.,2020
2. Technology and research progress of split grouting reinforcement;Qin;Coal Sci. Technol.,2020
3. A literature review on properties and applications of grouts for shield tunnel;He;Constr. Build. Mater.,2020
4. Research of high performance inorganic-organic composite grouting materials;Guan;J. China Coal Soc.,2020
5. Experimental study on the engineering characteristics of red mud-based green high-performance grouting material;Zhang;Chin. J. Rock Mech. Eng.,2022
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献