Affiliation:
1. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
Abstract
The hydrothermal synthesis of a nanosized NiCo2O4 oxide with several levels of hierarchical self-organization was studied. Using X-ray diffraction analysis (XRD) and Fourier-transform infrared (FTIR) spectroscopy, it was determined that under the selected synthesis conditions, a nickel-cobalt carbonate hydroxide hydrate of the composition M(CO3)0.5(OH)·0.11H2O (where M–Ni2+ and Co2+) is formed as a semi-product. The conditions of semi-product transformation into the target oxide were determined by simultaneous thermal analysis. It was found by means of scanning electron microscopy (SEM) that the main powder fraction consists of hierarchically organized microspheres of 3–10 μm in diameter, and individual nanorods are observed as the second fraction of the powder. Nanorod microstructure was further studied by transmission electron microscopy (TEM). A hierarchically organized NiCo2O4 film was printed on the surface of a flexible carbon paper (CP) using an optimized microplotter printing technique and functional inks based on the obtained oxide powder. It was shown by XRD, TEM, and atomic force microscopy (AFM) that the crystalline structure and microstructural features of the oxide particles are preserved when deposited on the surface of the flexible substrate. It was found that the obtained electrode sample is characterized by a specific capacitance value of 420 F/g at a current density of 1 A/g, and the capacitance loss during 2000 charge–discharge cycles at 10 A/g is 10%, which indicates a high material stability. It was established that the proposed synthesis and printing technology enables the efficient automated formation of corresponding miniature electrode nanostructures as promising components for flexible planar supercapacitors.
Funder
Council for Grants of the President of the Russian Federation for the state support of young Russian scientists
Ministry of Science and Higher Education of the Russian Federation
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献