Research on the Effect of Load and Rotation Speed on Resistance to Combined Wear of Stainless Steels Using ANOVA Analysis

Author:

Rozing Goran1ORCID,Duspara Miroslav2ORCID,Dudic Branislav34ORCID,Savkovic Borislav5ORCID

Affiliation:

1. Faculty of Electrical Engineering, Computer Science and Information Technology, University of Osijek, 31000 Osijek, Croatia

2. Mechanical Engineering Faculty in Slavonski Brod, University of Slavonski Brod, 35000 Slavonski Brod, Croatia

3. Faculty of Management, Comenius University Bratislava, 81499 Bratislava, Slovakia

4. Faculty of Economics and Engineering Management, University Business Academy, 21000 Novi Sad, Serbia

5. Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

This research was carried out with the aim of obtaining appropriate principles for describing the influence of working parameters and the aggressive action of an acidic medium on the wear and corrosion resistance of martensitic stainless steels. Tribological tests were performed on induction-hardened surfaces of stainless steels X20Cr13 and X17CrNi16-2 under combined wear conditions at a load of 100 to 300 N and a rotation speed of 382 to 754 min−1. The wear test was carried out on a tribometer with the use of an aggressive medium in the chamber. After each wear cycle on the tribometer, the samples were exposed to corrosion action in a corrosion test bath. Analysis of variance revealed a significant influence of rotation speed and load due to wear on the tribometer. Testing the difference in the mass loss values of the samples due to corrosion using the Mann–Whitney U test did not show a significant effect of corrosion. Steel X20Cr13 showed greater resistance to combined wear, which had a 27% lower wear intensity compared to steel X17CrNi16-2. The increase in wear resistance of X20Cr13 steel can be attributed to the higher surface hardness achieved and the effective depth of hardening. The mentioned resistance is the result of the creation of a martensitic surface layer with dispersed carbides, which increases the resistance to abrasion, dynamic durability, and fatigue of the surface of the protective layer.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3