The Mechanical Properties of a Transient Liquid Phase Diffusion Bonded SSM-ADC12 Aluminum Alloy with a ZnAl4Cu3 Zinc Alloy Interlayer

Author:

Meengam Chaiyoot1ORCID,Dunyakul Yongyuth2,Maunkhaw Dech2

Affiliation:

1. Faculty of Industrial Technology, Songkhla Rajabhat University, Songkhla 90000, Thailand

2. Faculty of Engineering, Rajamangala University of Technology Srivijaya, Songkhla 90000, Thailand

Abstract

In this study, the mechanical properties of SSM-ADC12 aluminum alloy specimens with a ZnAl4Cu3 zinc alloy interlayer were observed after Transient Liquid Phase Diffusion Bonding (TLPDB), a welding process conducted in a semi-solid state. The purpose of the experiment was to study how the following parameters—bonding temperature (400, 430, 460, 490, and 520 °C), bonding time (60, 90, and 120 min), and thickness of the ZnAl4Cu3 zinc alloy (0.5, 1.0, and 2.0 mm)—affect the mechanical properties and the types of defects that formed. The results show that the bonding strength varied significantly with different parameters following the TLPDB process. A maximum bonding strength of 32.21 MPa was achieved at a bonding temperature of 490 °C, with 20 min of bonding and a ZnAl4Cu3 zinc alloy layer that was 2.0 mm thick. Conversely, changing the welding parameters influenced the bonding strength. A minimum bonding strength of 2.73 MPa was achieved at a bonding temperature of 400 °C, with a bonding time of 90 min and a ZnAl4Cu3 zinc alloy interlayer that was 2.0 mm thick. The Vickers microhardness results showed that the bonded zone had a lower hardness value compared to the base materials (BMs) of the SSM-ADC12 aluminum alloy (86.60 HV) and the ZnAl4Cu3 zinc alloy (129.37 HV). The maximum hardness was 83.27 HV, which resulted from a bonding temperature of 520 °C, a bonding time of 90 min, and a ZnAl4Cu3 zinc alloy that was 2.0 mm thick. However, in the near interface, the hardness value increased because of the formation of MgZn2 intermetallic compounds (IMCs). The fatigue results showed that the stress amplitude was 31.21 MPa in the BMs of the SSM-ADC12 aluminum alloy and 20.92 MPa in the material that results from this TLPDB process (TLPDB Material) when the limit of cyclic loading exceeded 106 cycles. Microstructural examination revealed that transformation from a β-eutectic Si IMC recrystallization structure to η(Zn–Al–Cu) and β(Al2Mg3Zn3) IMCs occurred. A size reduction to a width of 6–11 µm and a length of 16–44 µm was observed via SEM. Finally, voids or porosity and bucking defects were found in this experiment.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Reference47 articles.

1. Manufacturing of Aerospace Parts with Diffusion Bonding Technology;Lee;Appl. Mech. Mater.,2011

2. Pola, A., Tocci, M., and Kapranos, P. (2018). Microstructure and Properties of Semi-Solid Aluminum Alloys: A Literature Review. Metals, 8.

3. Fluidity of ADC12 alloy based on theoretical and computational fluid dynamics;Vinith;Mech. Eng.,2015

4. (2000). Japanese Industrial Standard, Aluminum Alloys Die Castings (ADC 12) (Standard No. JIS H 5302:Japan).

5. Research and development of gas induced semi-solid process for industrial applications;Wannasin;Trans. Nonferr. Met. Soc. China,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3