Enhancement of Additively Manufactured Bagasse Fiber-Reinforced Composite Material Properties Utilizing a Novel Fiber Extraction Process Used for 3D SLA Printing

Author:

Bhuiyan Md. Shahnewaz1,Fardin Ahmed2,Rahman M. Azizur3ORCID,Mohiv Arafath1,Islam Rashedul1,Kharshiduzzaman Md.1ORCID,Khan Md. Ershad4ORCID,Haque Mohammad Rejaul1ORCID

Affiliation:

1. Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh

2. Center for Business, George Brown College, Toronto, ON M5A 3W8, Canada

3. BRAC Business School, BRAC University, Dhaka 1212, Bangladesh

4. Department of Textile Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh

Abstract

The growing interest in sustainable and biodegradable materials has prompted significant attention towards natural fiber-reinforced composites (FRC) due to their lower environmental impacts. In a similar sustainable vein, this study fabricated composite materials utilizing bagasse fibers with the 3D SLA (Stereolithography) printing method. To start with, a novel fiber extraction process was adopted for extracting fiber from the bagasse stem in three distinct methods (Process-1, Process-2, and Process-3). The fiber extraction process includes washing, sun-drying, manual collection of rind fibers, immersion of rind fibers in NaOH at specific concentrations for specific durations, combing, and drying. In Process-1, the rind fibers were immersed in 5% NaOH for 15 h, while in Process-2 and Process-3, the rind fibers were immersed in 1% NaOH, but the soaking time varied: 25 h for Process-2 and 18 h for Process-3.for 25 h, and in Process-3, the rind fibers were immersed in 1% NaOH for 18 h. The resulting bagasse fibers underwent comprehensive property assessment with a focus on functional group analysis, diameter measurement, and tensile strength assessment. Subsequently, these fibers were used to fabricate composite materials via the 3D SLA printing technique after being treated in a NaOH solution. The Fourier Transform Infrared (FTIR) Spectroscopy results clearly showed that a fraction of hemicellulose and lignin was removed by NaOH, resulting in improved tensile strength of the bagasse fibers. Three-dimensional-printed composites reinforced with bagasse fibers extracted through the P1 method showed the highest improvement in tensile strength (approximately 70%) compared to specimens made from pure resin. The lack of pores in the composite and the observable fiber fracture phenomena clearly indicate that 3D printing technology effectively enhances the quality of the interface between the fiber and the matrix interfacial bonding, consequently resulting in improved tensile properties of the composites. The 3D-printed composites reinforced with bagasse fiber showcased impressive tensile properties and provided solutions to the limitations of traditional composite manufacturing methods. This sets the stage for developing innovative composite materials that combine natural fibers with cutting-edge fabrication techniques, offering a promising path to tackle present and future economic and ecological challenges.

Funder

Ahsanullah University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3