A Survey of Underwater Acoustic Data Classification Methods Using Deep Learning for Shoreline Surveillance

Author:

Domingos Lucas C. F.ORCID,Santos Paulo E.ORCID,Skelton Phillip S. M.ORCID,Brinkworth Russell S. A.ORCID,Sammut KarlORCID

Abstract

This paper presents a comprehensive overview of current deep-learning methods for automatic object classification of underwater sonar data for shoreline surveillance, concentrating mostly on the classification of vessels from passive sonar data and the identification of objects of interest from active sonar (such as minelike objects, human figures or debris of wrecked ships). Not only is the contribution of this work to provide a systematic description of the state of the art of this field, but also to identify five main ingredients in its current development: the application of deep-learning methods using convolutional layers alone; deep-learning methods that apply biologically inspired feature-extraction filters as a preprocessing step; classification of data from frequency and time–frequency analysis; methods using machine learning to extract features from original signals; and transfer learning methods. This paper also describes some of the most important datasets cited in the literature and discusses data-augmentation techniques. The latter are used for coping with the scarcity of annotated sonar datasets from real maritime missions.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3