A System Dynamics Modeling Support System Based on Computational Intelligence

Author:

Abdelbari Hassan,Shafi Kamran

Abstract

System dynamics (SD) is a complex systems modeling and simulation approach with wide ranging applications in various science and engineering disciplines. While subject matter experts lead most of the model building, recent advances have attempted to bring system dynamics closer to fast growing fields such as data sciences. This may prove promising for the development of novel support methods that augment human cognition and improve efficiencies in the model building process. A few different directions have been explored recently to support individual modeling stages, such as the generation of model structure, model calibration and policy optimization. However, an integrated approach that supports across the board modeling process is still missing. In this paper, a prototype integrated modeling support system is presented for the purpose of supporting the modelers at each stage of the process. The proposed support system facilitates data-driven inferring of causal loop diagrams (CLDs), stock-flow diagrams (SFDs), model equations and the estimation of model parameters using computational intelligence (CI) techniques. The ultimate goal of the proposed system is to support the construction of complex models, where the human power is not enough. With this goal in mind, we demonstrate the working and utility of the proposed support system. We have used two well-known synthetic reality case studies with small models from the system dynamics literature, in order to verify the support system performance. The experimental results showed the effectiveness of the proposed support system to infer close model structures to target models directly from system time-series observations. Future work will focus on improving the support system so that it can generate complex models on a large scale.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3