Climatically Driven Holocene Glacier Advances in the Russian Altai Based on Radiocarbon and OSL Dating and Tree Ring Analysis

Author:

Agatova Anna,Nepop Roman,Nazarov Andrey,Ovchinnikov Ivan,Moska Piotr

Abstract

Analysis of new chronological data, including 55 radiocarbon, 1 OSL, and 8 dendrochronological dates, obtained in the upper reaches of trough valleys within the Katun, North Chuya, South Chuya, and Chikhachev ranges, together with the 55 previously published ones, specifies climatically driven glacier dynamic in the Russian Altai. Available data refute the traditional concept of the Russian Altai Holocene glaciations as a consecutive retreat of the Late Pleistocene glaciation. Considerable and prolonged warming in the Early Holocene started no later than 11.3–11.4 cal kBP. It caused significant shrinking or even complete degradation of alpine glaciers and regeneration of forest vegetation 300–400 m above the modern upper timber limit. Stadial advances occurred in the middle of the Holocene (4.9–4.2 cal kBP), during the Historical (2.3–1.7 cal kBP), and the Aktru (LIA thirteenth–nineteenth century) stages. New radiocarbon ages of fossil soils limited glaciers expansion in the Middle Holocene by the size of the Historical moraine. Lesser glacial activity between 5 and 4 cal kBP is also supported by rapid reforestation in the heads of trough valleys. Glaciers advance within the Russian Altai, accompanied by accumulation of the Akkem moraine, could have occurred at the end of the Late Pleistocene.

Publisher

MDPI AG

Subject

Atmospheric Science

Reference75 articles.

1. The Ways ALONG the Russian Altai;Sapozhnikov,1912

2. About ancient glaciations of the Altai and the Caucasus (comparative sketch);Vardanyants;News USSR Geogr. Soc.,1938

3. The Report on Geology-Glaciological Part of the Altai Glacial Expedition of the Year 1933. Transactions of Glacial Expedition of the USSR Academy of Sciences;Tumencev,1936

4. Moraines of Beluha glaciers;Myagkov;Bull. West. Sib. Geol. Trust.,1936

5. Cenozoic Deposits and Neotectonics of Southeastern Altai;Devyatkin,1965

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3